Silyl enol ethers as new protecting groups for alkyl 4-halo-3oxobutanoates; the preparation of pure (3-alkoxycarbonyl-2oxopropyl)triphenylphosphonium salts

C ornelis M . M oorhoff*

Department of Chemistry, University of Tasmania, GPO B ox 252C, H obart, Tasmania, Australia 7001

Abstract

A new method has been developed for the preparation of pure (3-alkoxycarbonyl-2-oxopropyl)triphenylphosphonium salts 8. A lkyl 4-bromo-3-oxobutanoates and alkyl 4-chloro-3-oxobutanoates 7 are protected as the trimethylsilyl enol ethers prior to treatment of the resulting bromo(trimethylsilyl enol ether) esters 20c and 21c with triphenylphosphine in toluene and then addition of a little water to give pure (3-iso-propoxycarbonyl-2-oxopropyl)triphenylphosphonium bromide 8c. Bromo(silyl enol ether) esters react more efficiently with triphenylphosphine than the chloro(silyl enol ether) esters. tert-Butyldimethylsilyl enol ethers of alkyl 4-bromo-3-oxobutanoates and alkyl 4-chloro-3-oxobutanoates 7 also react with triphenylphosphine. Protection of isopropyl 4-bromo-3-oxobutanoate 7 c as the enol acetate followed by subsequent reaction with triphenylphosphine gives (Z)-(2-acetoxy-3-isopropoxycarbonylbut-2enyl)triphenylphosphonium bromide 17.

Introduction

M ore than three decades ago, ethyl 3-oxo-4-(triphenylphosphoranylidene)butanoate la was introduced ${ }^{1}$ as a potentially useful phosphonium ylide. ${ }^{2} \mathrm{H}$ owever, it soon became clear that this phosphonium ylide $\mathbf{1}$ is one of the more difficult ylides to use ${ }^{3}$ For example, condensation of the phosphonium ylide la and benzaldehyde gave a $47 \%{ }^{1}(62 \%)^{3 a}$ yield of the expected E -W ittig product, the $\mathrm{E}-\gamma, \delta$-unsaturated- β-keto ester 2a which is strongly enolisable (Scheme 1). ${ }^{1}$ On the other hand, condensation of the phosphonium ylide la with acetaldehyde did not give the expected γ, δ-unsaturated- β-keto ester $\mathbf{2 b}$ but a low yield of the aldol product of acetaldehyde and the γ, δ -unsaturated- β-keto ester $\mathbf{2 b}$. ${ }^{3 a}$ Sporadic applications of the phosphonium ylides $\mathbf{1 a}{ }^{40,4 c, 4 f}$ and $\mathbf{1 b}{ }^{4 \mathrm{~d}, 4 \mathrm{e}}$ in syntheses followed for about 20 years. A sudden interest in phosphonium ylide 1 occurred when Bodalski et al. announced a very useful annuIation technique. ${ }^{5}$ E thyl 3-0xo-4-(triphenylphosphoranylidene)butanoate 1a in the presence of 'wet' sodium hydride condensed with a number of α, β-unsaturated carbonyl compounds to give 6 -substituted 2-oxocyclohex-3-enecarboxylates 3 (for example 3a-3c). ${ }^{5}$ This result can be described in terms of an initial M ichael-attack of the γ-ylide of la on the β-carbon of the α, β unsaturated carbonyl compound followed by an intramolecular Wittig condensation. ${ }^{6}$ This annulation technique was used by others in successful syntheses. ${ }^{7-9}$ Recently, five-membered ring annulation techniques using $1 a^{10 a}$ and $1 e^{10 c, 10 d}$ have been developed for the preparation of 4 -substituted 2-oxocyclopent3 -enecarboxylates 4 (for example 4a-4c), ${ }^{10}$ thereby securing a meaningful role for phosphonium ylide 1 in organic synthesis. The phosphonium ylide 1a has recently attracted attention because it can be activated by 'wet' NaH . It can thereby be manipulated into reacting with aliphatic carbonyl compounds to give γ, δ-unsaturated- β-keto esters $\mathbf{2}$ with high Z -selectivity, for example 2b-2c. ${ }^{11}$

For some time now, we have been interested in novel reactions of the phosphonium ylide 1. A s a further extension of the work of Pietrusiewicz et al., ${ }^{5}$ we have found that without activation (i.e. not using 'wet' sodium hydride), the phosphonium ylide la reacts with sterically hindered α, β-unsaturated- α alkoxycarbonyl ketones to give, via a M ichael-Wittig condensation, 6 -oxo- 2 -vinylcyclohex-4-ene-1,3-dicarboxylates 5 . ${ }^{8,9}$ We

2a $\mathrm{R}^{1}=\mathrm{OEt}, \mathrm{R}^{2}=\mathrm{Ph}$
b $\mathrm{R}^{1}=\mathrm{OEt}, \mathrm{R}^{2}=\mathrm{Me}$
$\mathrm{R}^{1}=$ OER, $\mathrm{R}^{2}=$ Et
d $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=(\mathrm{Me})_{2} \mathrm{C}=\mathrm{CH}$

5a $\mathrm{R}^{1}=\mathrm{OEt}, \mathrm{R}^{6}=(\mathrm{Me})_{2} \mathrm{C}=\mathrm{CHCH}=\mathrm{CH}$
$\mathrm{R}^{\mathrm{R}^{7}}=\mathrm{OEt}$
c $\mathrm{R}^{1}=\mathrm{OEt}, \mathrm{R}^{3}=\mathrm{Ph}, \mathrm{R}^{4}=\mathrm{H}$
b $\mathrm{R}^{\mathbf{1}}=\mathrm{OMe}, \mathrm{R}^{\mathbf{6}}=\mathrm{Me}, \mathrm{R}^{7}=\mathrm{OMe}$

Scheme 1 Reagents and conditions: i, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, E-isomers $2 \mathrm{a}^{1,3 \mathrm{Ba}}$ or 'wet' NaH, Z-isomers $\mathbf{2 b}$ - $\mathbf{2 c}{ }^{11}$ or LDA, mixture of E - and Z -isomers $2 d^{8,9}$ in THF at room temp.; ii, 'wet' $\mathrm{NaH}^{5} 3 \mathrm{a}-3 \mathrm{c}$ or $\mathrm{NaOH}, 3 \mathrm{~d}^{8}$ in THF; iii, EtOH or MeOH, room temp. ${ }^{10}$ iv, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux ${ }^{8,9}$ and see ref. 7(d), reflux, THF
also succeeded in dramatically increasing the yield of γ, δ -unsaturated- β-keto esters $\mathbf{2}$ obtained from the condensation of the lithium enolate of the phosphonium ylide 1 . This was generated by treatment of the phosphonium ylide $\mathbf{1}$ with LDA (the
γ-methylene group of the phosphonium ylide $\mathbf{1}$ was blocked for other and further carbonyl condensations), and either saturatedor β-hindered- α, β-unsaturated aldehydes. ${ }^{8,9}$ We have thereby made two distinct pathways for Wittig condensations of α, β unsaturated carbonyl compounds. When initiated by the more ionic sodium enolate of the phosphonium ylide 1 (Scheme 2),

Scheme 2 M $=\mathrm{Li}, \mathrm{Na}, \mathrm{K}$
the formation of substituted 2-oxocyclohex-3-enecarboxylates e.g. 3b and $\mathbf{3 d}$ results. H owever, the more covalent lithium enolate of the phosphonium ylide 1 predominantly produces a mixture of E - and $\mathrm{Z}-\gamma, \delta$-unsaturated- β-keto esters e.g. 2 d (Scheme 1). ${ }^{8,9}$

D espite the tremendous potential of the phosphonium ylide 1, very little is known about the precursor (3-alkoxycarbonyl-2oxopropyl)triphenylphosphonium salt $8^{1,3 \mathrm{aa}}$ In this paper we describe the preparation of pure phosphonium salt 8 and some of the characteristics of lithium and other metal enolates of the phosphonium salt 8.

Results and discussion

As part of a programme aimed at developing synthetic routes for the preparation of new insect growth regulators from $\mathbf{2 e}$ (Scheme 1), we had a need for pure (3-isopropoxycarbonyl-2oxopropyl)triphenylphosphonium bromide 8c (Scheme 3).

$$
\begin{array}{rll}
\mathbf{8 a} & \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{X}=\mathrm{Br} & \text { g } \mathrm{R}^{1}=\mathrm{NH}_{2}, \mathrm{X}=\mathrm{Cl} \\
\mathbf{b} & \mathrm{R}^{1}=\mathrm{OEt}, \mathrm{X}=\mathrm{Br} & \text { h } \mathrm{R}^{1}=\mathrm{NHPh}, \mathrm{X}=\mathrm{Cl} \\
\mathbf{c} & \mathrm{R}^{1}=\mathrm{OPr}^{\mathrm{i}}, \mathrm{X}=\mathrm{Br} & \mathrm{i} \\
\mathbf{d} & \mathrm{R}^{1}=\mathrm{SEt}, \mathrm{X}=\mathrm{Br} & \\
\mathbf{e} & \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{X}=\mathrm{Cl} & \\
\mathbf{f} & \mathrm{R}^{1}=\mathrm{OEt}, \mathrm{X}=\mathrm{Cl} & \text { j } \\
\mathrm{R}^{1}=\mathrm{X}=\mathrm{Cl}
\end{array}
$$

Scheme 3 Reagents and conditions: $\mathrm{i}, \mathrm{Br}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (for 7a-7d); ii, $\mathrm{Ph}_{3} \mathrm{P}$ in solvent 24 h (for 8a-8f) or $\mathrm{Ph}_{3} \mathrm{P}$, heat without solvent (for $8 \mathrm{e}, 8 \mathrm{8f}$)

In general, (3-alkoxycarbonyl-2-oxopropyl)triphenylphosphonium salts 8a-8f are prepared by adding alkyl 4-halo-3oxobutanoates 7a-7f to triphenylphosphine in a solvent, usually benzene. ${ }^{1,3 \mathrm{a}, 9} \mathrm{In}$ an attempt to substitute a different solvent for benzene, pure isopropyl 4-bromo-3-oxobutanoate $7{ }^{12}$ was added to triphenylphosphine $\left(\mathrm{Ph}_{3} \mathrm{P}\right)$ in anhydrous diethyl ether. To our dismay a mixture of (3-isopropoxycarbonyl-2-oxopropyl)triphenylphosphonium bromide $\mathbf{8 c}$ and hydroxytriphenylphosphonium bromide, ${ }^{13,13 i}$ in a ratio of $4: 1$, precipitated. Isopropyl 4-bromo-3-oxobutanoate 7c and isopropyl-3oxobutanoate $6 \mathbf{c}$ were also isolated from the ether solution (Scheme 4). This result was not entirely unexpected. Previous preparation of the phosphonium bromide $\mathbf{8 b}$ from ethyl 4-bromo-3-oxobutanoate 7b and $\mathrm{Ph}_{3} \mathrm{P}$ in methanol gave ethyl 3 -oxobutanoate $6 \mathbf{b}(78 \%), \mathrm{Ph}_{3} \mathrm{P}=0$ (89%) and a little of the phosphonium bromide $\mathbf{8 b}(<4 \%)$. ${ }^{3 a}$ It was postulated that the formation of $\mathbf{6 b}$ and $\mathrm{Ph}_{3} \mathrm{P}=0$ was due to the solvolysis of an

Table 1

	Y ield of products (\%)			
	$\mathbf{8 c}$	$\mathbf{7 c}$	$\mathbf{6 c}$	Salts $^{\text {a }}$
Solvent	63	9	18	10
Cyclohexane	69	10	10	11
Dichloromethane	76	9	9	6
A cetone	80	10	2	8
D iethyl ether	84	3	5	8
Toluene	85	2	8	5
Tetrahydrofuran	86	3	4	7
Tetrachloromethane	86	4	5	5
A cetonitrile	86	4	5	5
Benzene				

${ }^{\text {a }}$ Including $9 \mathrm{c}, 10 \mathrm{c}$ but not $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{OHBr}^{-}$.

Scheme 4 Reagents and conditions: $\mathrm{i}, \mathrm{Ph}_{3} \mathrm{P}$ in an appropriate solvent (see Table 1)

intermediate enol phosphonium salt. ${ }^{33,13}$ Enol phosphonium bromides prepared from α-bromo ketones are very sensitive towards moisture and will quickly hydrolyse to form debrominated ketones, $\mathrm{Ph}_{3} \mathrm{P}=0$ and hydrobromic acid. ${ }^{13,14} \mathrm{C}$ hloroform and benzene gave much higher yields of $\mathbf{8 b}$.
The quaternisation of pure isopropyl 4-bromo-3-oxobutanoate 7 c and $\mathrm{Ph}_{3} \mathrm{P}$ was repeated in anhydrous CDCl_{3} and studied by ${ }^{1} H N M R$ spectroscopy at room temperature. An exothermic reaction resulted, and within 15 min the solution became pale yellow. The reaction had finished after 30 min . A nalysis of the ${ }^{1} \mathrm{H} N M R$ spectrum showed a mixture of the expected phosphonium salt 8c, isopropyl 3-oxobutanoate $\mathbf{6 c}$, and apparently, unreacted isopropyl 4-bromo-3-oxobutanoate 7c. Liquid secondary ion mass spectrometry (LSIMS) revealed two molecular ions attributed to the bromoketophosphonium bromide 9 c and the bromovinylphosphonium bromide 10c in a combined yield of about $5 \%{ }^{15}$ However, at no stage could a trace of the enol phosphonium bromide 11c be found. This implies that strong enolization of the bromo ester ($\sim 22 \%$ in CDCl_{3} at room temperature) results in protonation of the enolate bromophosphonium ion pair 12c, leading to the formation of isopropyl 3-oxobutanoate $\mathbf{6 c}$ (Scheme 4). ${ }^{13 \mathrm{E}}$ The reaction of pure ($\mathbf{~} 99 \%$) 1-methylethyl 4-bromo-3-oxobutanoate $\mathbf{7 c}{ }^{\mathbf{1 2}}$ and triphenylphosphine in different solvents and under various conditions is summarised in Table 1.
The addition of alkyl 4-bromo-3-oxobutanoates 7a-7d ${ }^{15}$ to triphenylphosphine gave at the most an $86 \pm 2 \%$ yield of (3 -alkoxycarbonyl-2-oxopropyl)triphenylphosphonium bromides 8a-8d. Changing the reaction temperature to $-10^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$ in CDCl_{3}, or changing the addition procedure by adding triphenylphosphine to the bromo ester 7, had only a slight effect on the yield of the phosphonium salts 8 . U sing 2 mol equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ to bromo ester 7c actually increased the formation of $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{OH} \mathrm{Br}^{-}$. Using DMSO as a solvent had a disastrous effect on the formation of $\mathbf{8 c}$, presumably because reactive intermediates attacked the solvent too. Initially, performing the
same reaction in wet CDCl_{3} showed little difference in the ratio of products formed, but after 24 h , the acidic solution decarboxylated some of the phosphonium salt $\mathbf{8 c}$ and led to the formation of (2-oxopropyl)triphenylphosphonium bromide. With in the limits of ${ }^{1} \mathrm{H}$ NMR detection, no complex aldol derivatives were found. ${ }^{13 \mathrm{i}}$ A ddition of the bromo ester $\mathbf{7 c}$ to a melt of triphenylphosphine led to a rapid exothermic reaction and resulted in the formation of a dark brown gel comprising of at least five phosphonium salts. In a related study, a melt of triphenylarsine reacted with alkyl 4-bromo-3-oxobutanoates 7a and $\mathbf{7 b}$ to give the corresponding pure arsonium salts. ${ }^{16}$
The corresponding alkyl 4-chloro-3-oxobutanoates 7 e and 7 f reacted with triphenylphosphine either in toluene or when the substrates were added neat and heated in an oven for 2 h at $80^{\circ} \mathrm{C}$. Impure (3-alkoxycarbonyl-2-oxopropyl)triphenylphosphonium chlorides 8 e and 8 ff were isolated (Scheme 3). A mixture of chlorinated phosphonium salts were by-products and very little alkyl 3 -oxobutanoate $\mathbf{6 a}$ and $\mathbf{6} \mathbf{b}$ could be found in the reaction mixture.

Protection of alkyl 4-halo-3-oxobutanoates 7

To eliminate the formation of undesirable by-products during the reaction of alkyl 4-halo-3-oxobutanoate $\mathbf{7}$ with triphenylphosphine, a new route was investigated, involving protection of the keto group of the haloketo ester 7 followed by reaction with triphenylphosphine and subsequent cleavage of the protected keto group. Protection of the keto group of $7 \mathbf{c}$ as a ketal was accomplished with glycol and $\mathrm{p}-\mathrm{TsOH}$ as a catalyst and gave isopropyl 2-bromomethyl-1,3-dioxolane-2-ethanoate 15 . Unfortunately, the 2-bromomethyl-1,3-dioxolane 15 failed to react with triphenylphosphine. Instead the bromo ester 7c was refluxed with excess isopropenyl acetate in the presence of p -TsOH and gave the Z -bromoenol acetate 16 c . ${ }^{12}$ Triphenylphosphine and the bromoenol acetate 16 c were heated at $80^{\circ} \mathrm{C}$ without solvent for 1 h to give the Z -phosphonium salt 17 in almost quantitative yield (Scheme 5). For this quaternisation, it

Scheme 5 Reagents and conditions: i, Glycol, p-TsOH, $\mathrm{C}_{6} \mathrm{H}_{6}, 85 \%$; ii, excess isopropenyl acetate, p-TsOH, 16c: 79\% 16e: 94\%; iii, $\mathrm{Ph}_{3} \mathrm{P}$, neat, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}$
was of crucial importance that the enol acetate bromoester 16c was very pure, otherwise side reactions seem to take over and generate HBr and acetic acid, resulting in impure phosphonium bromide 17. With the chloroenol acetates $\mathbf{1 6 e}$ and $\mathbf{1 6 f}$ this is even more pronounced. Thus, it was found that although the chloroenol acetates, 16 e and $\mathbf{1 6 f}$, were easier to prepare in higher purity than the corresponding bromoenol acetate 16c, these reacted more slowly at $80^{\circ} \mathrm{C}$ with triphenylphosphine to give a foaming brownish black gel and acetic acid.

In solution the phosphonium salt 17 rearranged to a mixture of 17 , the E -isomer 18 and the vinylic salt 19. For example, in CDCl_{3}, water-catalysed isomerisation occurred within minutes, while in 'anhydrous' CDCl_{3} equilibration to the allylic salts 17 and 19 and vinylic salt 18 occurred more slowly, taking seven days to stabilise to a ratio of $25: 55: 20$ (Scheme 6). When

Scheme 6 Reagents and conditions: i, $\mathrm{Ph}_{3} \mathrm{P}$ in $\mathrm{CDCl}_{3}, 7$ days
kept dry the phosphonium salt $\mathbf{1 7}$ was stable. U nfortunately, deprotection of either pure $\mathbf{1 7}$ or the mixture of enol acetate phosphonium salts $\mathbf{1 7}, 18$ and 19 in propan-2-0l in the presence of freshly prepared NaOPr rigave the desired phosphonium ylide $\mathbf{l c}$, though rather impure and in only a moderate yield.
Better results were obtained by changing the enol acetate protecting group of alkyl halo-3-oxobutanoates 7 for the trimethylsilyl enol ether group. ${ }^{17}$ Deprotonation of isopropyl 4-bromo-3-oxobutanoate 7 c with sodium hydridein diethyl ether at $0^{\circ} \mathrm{C}$, followed by quenching of the anion with trimethylsilyl chloride at room temperature, gave predominantly the Z-silyl enol ether 20c and the E-isomer 21c in a ratio of 13:1 (Scheme 7). The deshielding effect of the ester carbonyl on the methylene

Scheme 7 Reactions and conditions: i, $\mathrm{NaH}, \mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{Me} \mathrm{e}_{3} \mathrm{SiCl}$; iii, $\mathrm{Ph}_{3} \mathrm{P}$, toluene; iv, few droplets water, toluene
protons of the E -isomer 21c made the assignment possible. ${ }^{18}$ It was necessary to use 15% excess sodium hydride and trimethylsilyl chloride. The workup procedure was carried out under strict anhydrous conditions. A fter the reaction had completed, the suspension was not filtered. Instead the solvent was removed under vacuum and 20c was directly vacuum distilled and stored under argon.
The reaction of the mixture of silyl enol ethers $\mathbf{2 0} \mathbf{c}$ and $\mathbf{2 1 c}$ with triphenylphosphine in toluene at room temperature for 24 h followed by decomposition with a little water, gave exceptionally pure phosphonium bromide 8 c in high yield. This reaction was studied by ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectroscopy. Treatment of silyl enol ether 20c and 21c with $\mathrm{Ph}_{3} \mathrm{P}$ in anhydrous CDCl_{3} gave a mixture of vinylic- and allylic-phosphonium salts 22c, 23c and 24c (Scheme 7). In a closed N M R-tube, hydrolyses to the phosphonium bromide 8 c took place very slowly. On the other hand, with a little water, hydrolyses to the phosphonium bromide 8c occurred instantaneously. Likewise, the trimethylsilyl enol ethers 20 f and 21f were produced from ethyl chloro-3-

Table $2{ }^{13} \mathrm{C}$ Chemical shifts (δ_{c} in ppm) of compounds 20c, 20f, 21f, 26c, 22c, 24c and 28cab

20f $\mathrm{X}=\mathrm{Cl}$
21f $\mathrm{X}=\mathrm{Cl}$,
25f $\mathrm{X}=\mathrm{Cl}$

C	20c	$20 f$	21 f	25c	22c 62-58\%		24c 38-42\%		28c 79\%	
						$J_{\text {PC }}$		$J_{\text {PC }}$		$J_{\text {PC }}$
1	33.77	46.16	40.96	28.81	83.34	94.4	$\sim 27{ }^{\text {c }}$	$\sim 55^{\text {c }}$	29.24	49.7
2	160.34	160.38	164.61	165.49	157.48	10.7	164.28	2.5	159.05	10.9
3	102.53	101.99	101.51	102.04	41.60	13.0	101.11	d	104.46	d
4	164.36	164.86	166.30	166.58	168.35	3.6	165.64	d	165.87	2.9
5	66.62	59.51	59.83	67.67	67.56		65.56		67.25	
6	21.93	14.28	14.12	22.42	19.93		19.9		21.30	
7	0.66	0.52	-0.14	18.00	-1.47		-2.16		17.44	
8				25.90					24.84	
9				-4.34					-5.13	
10					118.38	91.8	116.18	81.80	117.28	87.2
11					131.30	10.8	131.99	10.4	133.60	10.3
12					128.24	13.0	128.17	12.9	129.77	13.0
13					132.68	3.0	133.21	2.8	134.79	3.0

${ }^{\text {a }}$ At 50.3 M Hz in $\mathrm{CDCl}_{\mathbf{3}}$ and $\mathrm{J}_{\mathbf{p c}}$ measured in Hz . ${ }^{\mathbf{b}}$ Consult Schemes 7 and 8 for compounds. ${ }^{\mathbf{c}} \delta_{\mathbf{c}}$ and $\mathrm{J}_{\mathbf{p c}}$ not accurate. ${ }^{\mathbf{d}} \mathrm{J}_{\mathbf{p c}}$ too small to be measured.

Table $3{ }^{1} \mathrm{H}$ Chemical shifts (δ_{H} in ppm) of compounds 20c, 21c, 20f, 21f, 25c, 26c, 25f, 26f, 22c, 24c, 22f, 24f, 27c and 28ca, ${ }^{\text {a,b }}$

H	20c	21c	$20 f$	21 f	25c	$25 f$	26 f	22c 62-58\%		24c 38-42\%		27c 21\%		28c 79\%	
									$J_{\text {PH }}$						
1	3.79	4.48	3.90	4.60	4.47	4.55	3.84	6.53	18.0	5.77	15.8	6.15	$\sim 14{ }^{\text {c }}$	5.47	15.9
3	5.37	5.14	5.41	5.20	5.12	5.12	5.36	4.07	1.9	5.08	b	4.00	$\sim 2^{\text {c }}$	5.08	3.6
5	5.03	5.03	4.15	4.16	5.03	4.09		5.07		4.82				4.77	
6	1.24	1.26	1.27	1.28	1.24	1.21		1.30		1.14				1.09	
7	0.33	0.32	0.32	0.32				-0.070		0.12					
8					0.96	0.91								0.72	
9					0.27	0.21								0.18	
Ph								7.95-7.75		7.95-7.75		7.88-7.64		7.88-	

oxobutanoate 7 f in the ratio of $7: 1$ following the same procedure. H owever, reaction of this mixture of $20 f$ and $21 \mathbf{f}$ with $\mathrm{Ph}_{3} \mathrm{P}$ in CDCl_{3} at room temperature led to isomerisation to the thermodynamically more stable silyl enol ether 21f. In CDCl_{3} at $60^{\circ} \mathrm{C}$ slow quaternisation gave impure phosphonium salt $\mathbf{2 2 f}$ and substantial desilylation took place.

Instead of trimethylsilyl enol ethers 20 and 21, the more stable tert-butyldimethylsilyl enol ethers 25 and 26 were prepared from alkyl 4-bromo-3-oxobutanoate 7 using the same procedure as for the trimethylsilyl enol ether syntheses. The reactions were performed in anhydrous THF and took considerably longer to complete. ${ }^{19}$ The workup of tert-butyldimethylsilyl enol ethers $\mathbf{2 5}$ and the minor Z-isomers $\mathbf{2 6}$ respectively, was carried out by a simple filtration through silica gel. In this case no deprotection took place and the silyl enol ethers $\mathbf{2 5}$ c, 26c and 25f, $\mathbf{2 6 f}$ were far less sensitive to moisture. Reaction of a mixture of tert-butyldimethylsilyl enol ethers 25 c and 26c with $\mathrm{Ph}_{3} \mathrm{P}$ in toluene gave a mixture of vinylic phosphonium bromide 27c and allylic phosphonium bromide 28c in high yield (Scheme 8). Deprotection of these silyl enol ether phosphonium salts 27c and 28c was successfully carried out by adding a little water and filtering the precipitate. A high yield of pure phosphonium bromide $\mathbf{8 c}$ was thus obtained without the aid of a deprotection reagent. ${ }^{20}$ The mixture of $\mathbf{2 5 f}$ and $\mathbf{2 6 f}$ was heated with $\mathrm{Ph}_{3} \mathrm{P}$ without any solvent, but unfortunately this led to deprotection. A n impure mixture of phosphonium salts 27f and $28 f$ was obtained together with tert-butyldimethylsilyl chloride, tert-butyldimethylsilanol and bis(tert-butyldimethylsilyl) ether. This complex mixture was dissolved in

Scheme 8 Reactions and conditions: i, NaH, THF; ii, But $\mathrm{Me}_{2} \mathrm{SiCl}$; iii, $\mathrm{Ph}_{3} \mathrm{P}$, toluene; iv, few droplets water, toluene
dichloromethane and treated with a little water. Precipitation with toluene and recrystallisation gave a fairly pure sample of the phosphonium salt 8 f.
The phosphonium ylide lc was prepared by treating a dichloromethane solution of the corresponding phosphonium

Table $4{ }^{13} \mathrm{C}$ Chemical shifts (δ_{c} in ppm) of compounds $\mathbf{1 c}$, $\mathbf{1 c}$ (solid state), 8c, 29a, 29b, 30 ${ }^{\text {a }}$

29a $\mathrm{M}=\mathrm{Zn}, \mathrm{X}=\mathrm{Br}$ $\begin{aligned} \text { 29a } \quad \mathrm{M} & =\mathrm{Zn}, \mathrm{X}=\mathrm{Br} \\ \text { b } \quad \mathrm{M} & =\mathrm{Zn}, \mathrm{X}=\mathrm{Cl}\end{aligned}$ $30 \mathrm{M}=\mathrm{Li}, \mathrm{X}=\mathrm{I}$

C	8c		1c				29a	29b			30			
			Solution		Solid						64\%	36\%		
		$J_{\text {PC }}$		$J_{\text {PC }}$	K eto	Enol ${ }^{\text {b }}$		$J_{\text {PC }}$						
1	40.86	58.2	52.26	109	52.7	46.5	36.54	53	36.44	52.9	65.15	41.5	45.92	17.3
2	196.66	7.1	183.99	2.2	184.3	169.7	174.07	6.8	174.23	6.7	174.17	c	182.75	c
3	50.74	6	48.61	15.1	48.4	93.8	88.86	5.5	88.90	7.5	90.63	5.1	62.71	2.6
4	167.36	d	170.13	d	170.9	170.9	172.59	d	172.70	0	172.70	0	172.70	0
5	69.93		67.47		67.5	70.1	67.72		67.66		65.56		69.69	
6	22.18		21.73		21.7/21.9	20.7	21.58		21.57		21.84		21.47	
7	118.75	88.9	126.41	90.9	126.8	124.7	118.10	87.8	118.17	87.8	118.00	86.9	123.31	91.3
8	134.24	10.8	132.96	10.2	132.3	c	133.72	10.2	133.71	10.2	133.89	10.1	132.97	10.4
9	130.67	13.1	128.73	12.3	127.7	125.6	129.93	12.9	129.91	12.9	130.06	12.8	129.55	12.6
10	135.37	2.8	132.01	d	131.0	c	134.61	d	134.59	3	134.60	d	132.96	d

${ }^{\text {a }}$ At 50.3 M Hz in CDCl_{3} and $\mathrm{J}_{\mathbf{P C}}$ measured in Hz . ${ }^{\mathrm{b}} \delta_{\mathbf{C}}$ of the enol tautomer should be taken with caution. ${ }^{\mathrm{c}} \mathrm{N}$ ot observed. ${ }^{\mathrm{d}} \mathrm{J}_{\mathrm{Pc}}$ too small to be measured.

Table $5{ }^{\mathbf{1}} \mathrm{H}$ Chemical shifts ($\delta_{\mathbf{H}}$ in ppm) of compounds $\mathbf{1 c}, \mathbf{8 c}, \mathbf{2 9 a}, \mathbf{2 9 b}, \mathbf{3 0}{ }^{\mathbf{a}}$

	8c		1c		29a		29b		30			
H		$J_{\text {PH }}$	M ajor	$J_{\text {PH }}$	M inor	$J_{\text {PH }}$						
1	6.17	11.3	3.832	23	4.102	14.1	4.116	14.2	4.268	14.9	4.116	21.3
3	4.095	2.6	3.325	1.3	4.744	0	4.743	0	4.305	0	3.569	0
5	4.994		5.066		4.929		4.923		4.55		4.647	
6	1.22		1.256		1.096		1.091		0.973		1.13	
Ph	7.89-7.58		7.7-7.4		7.80-7.53		7.70-7.55		7.74-7.59		7.74-7	

${ }^{\text {a }}$ At 200 M Hz in CDCl_{3} and J_{PH} measured in Hz .
Table 6

Run	R eagents and conditions	Y ield (\%)		
		K eto ester 2e	$\begin{aligned} & \text { R atio } \\ & \mathrm{Z}: \mathrm{E} \end{aligned}$	Residue ${ }^{\text {a }}$
1	i, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Zn}, 40^{\circ} \mathrm{C}, 48 \mathrm{~h}$, workup; ii, THF, $0^{\circ} \mathrm{C}, \mathrm{KOBu}$, 12 h	10	3:7	
2	i, aq. $\mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$, workup; ii, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}^{\text {, }} 36 \mathrm{~h}, 3{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$	7	1:99	61
3	$\mathrm{i}, \mathrm{THF}, 2$ equiv. $\mathrm{KOBu}^{\text {t }}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min} ; \mathrm{ii}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$	25	96:4	12

${ }^{\text {a }}$ Complex condensation products. N ote that complex phosphonium compounds may form during condensations with $\mathbf{1 .}{ }^{22 \mathrm{~b}} \mathrm{RT}=$ room temperature.
salt 7c, with aqueous sodium carbonate. The ambident nucleophilic nature of alkyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 1 has been demonstrated, ${ }^{5,7-10}$ and this was shown by the following experiments. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R spectroscopy of $8 \mathbf{8}$ in CDCl_{3} showed no enolisation. A ddition of a little $\mathrm{D}_{2} \mathrm{O}$ led to deuterium exchange of both the α - and the γ-protons at an equal rate which clearly shows that deprotonation of 8 c can occur at both the α-methylene and the γ-methylene positions. Excess $\mathrm{D}_{2} \mathrm{O}$ deuteriated all four methylene protons within 5 min (Scheme 9). Deuterium exchange in the phosphonium ylide 1c in CDCl_{3} showed a similar result; all three positions were deuteriated within 5 min .
The phosphonium salt $\mathbf{8 c}$ reacted like a typical ambidentate
8 c

Scheme 9 Reagents and conditions: i, in CDCl_{3} add excess $\mathrm{D}_{2} \mathrm{O}$
complexing reagent; a solution of $\mathbf{8 c}$ in CDCl_{3} dissolved zinc, liberating hydrogen to form the complex 29a. ${ }^{21}$ A Iternatively, the ylide 1c complexed with ZnCl_{2} to form the equivalent chloro complex 29b (Scheme 10). ${ }^{12} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R studies showed the differences in chemical shifts between the complexes formed from Lil and theylide $\mathbf{1 c}$ in CDCl_{3}, and those complexes obtained from $\mathbf{1 c}$ and L ewis acids like $\mathrm{ZnCl}_{2}, \mathrm{AICl}_{3}$ and SnCl_{4} in CDCl_{3} (Tables 4 and 5). \dagger
A n investigation of whether metal enolates like 29a and 29b could be used as Wittig reagents in condensations with aldehydes was conducted (Table 6, run 1), and compared with the conventional Wittig condensations of $\mathbf{1 c}$ (Table 6, run 2). H owever, no advantage with this procedure was observed.

[^0]

Scheme 10 Reagents and conditions: i, Zn in CDCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, ZnCl_{2}-dioxane complex in CDCl_{3}

C onclusion

Preparation of trimethylsilyl enol ethers of alkyl 4-bromo-3oxobutanoates 7a-7c, followed consecutively by treatment of triphenylphosphine and a little water in toluene, gave pure (3-alkoxycarbonyl-2-oxopropyl)triphenylphosphonium bromides $\mathbf{8 a - 8 c}$. The same protocol did not work with alkyl 4-chloro-3oxobutanoates 7 e and 7 ff . However, protection of the carbonyl group as tert-butyldimethylsilyl enol ethers followed consecutively by quaternisation with $\mathrm{Ph}_{3} \mathrm{P}$ and a little water in toluene gave the corresponding fairly pure phosphonium chlorides 8 e 8f. This preparative procedure can be extended to a range of other β, δ-substituted phosphonium salts like $\mathbf{8} \mathbf{g}^{\mathbf{1}}$ and $\mathbf{8 h} \mathbf{~} \mathbf{8 j}{ }^{\mathbf{4 c}}$ (Scheme 3), which were otherwise obtained in a rather modest yield of $48-60 \%{ }^{4 c}$ of the isolated corresponding ylides and also the phosphonium ylides 24 (Scheme 11). ${ }^{23}$ D euterium

Scheme 11
exchange of the phosphonium salt $\mathbf{8 c}$ and the formation of metal enolates of (3-isopropoxycarbonyl-2-oxopropyl)triphenylphosphonium bromide 8 C are indicative of the ambident nucleophilic behaviour of isopropyl 3-0xo-4-(triphenylphosphoranylidene)butanoate $\mathbf{1 c}$.

Experimental

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{ppm}\right.$, with SiM_{4} as an internal standard) and ${ }^{13} \mathrm{C}$ NMR spectra (δ, ppm) were recorded in CDCl_{3} on a Varian Gemini-200 spectrometer at 200 and 50.3 M Hz respectively. ${ }^{31} \mathrm{P}$ NM R spectra were obtained on a Bruker A M -300 instrument at 121.5 M Hz and referenced to an external standard of 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$. J Values are given in Hz . High resolution chemical ionisation spectra (CI) using ammonia and liquid secondary ion mass spectra (LSIM S) were obtained from a K ratos Concept ISQ instrument. Infrared spectra were obtained on a Hitachi 270-30 FTIR spectrophotometer (film, NaCl plates). Ultraviolet absorbance was measured as solutions in $96 \% \mathrm{EtOH}$ on a Shimadzu UV-150 spectrophotometer. Microanalyses were obtained using a Carlo Erba, CHNSO EA 1108 Elemental A nalyser. Column chromatography was performed using M erck Si-60 (40-63 mm) silica gel. M ethyl 3-oxobutanoate 6a, ethyl 3 -oxobutanoate $\mathbf{6 b}$, methyl 4 -chloro-3-oxobutanoate $\mathbf{7 e}$ and ethyl 4-chloro-3-oxobutanoate 7 f were obtained from A Idrich Chemical Co. and distilled beforeuse. M ethyl 4-bromo3 -oxobutanoate 7a was prepared according to the literature. ${ }^{12}$ Trimethylsilyl chloride was obtained from Aldrich Chemical Co. and used without further purification. tert-Butyldimethylsilyl chloride was obtained from A Idrich Chemical Co. and sublimed before use. \dagger

Reaction of isopropyl 4-bromo-3-oxobutanoate 7 c and $\mathrm{Ph}_{3} \mathrm{P}$ in different solvents

M ethod (1). Isopropyl 4-bromo-3-oxobutanoate 7c (0.43 g , $1.927 \mathrm{mmol} ; 1 \%$ excess) in anhydrous solvent ($0.5 \mathrm{~cm}^{3}$) was added to a solution of triphenylphosphine ($0.50 \mathrm{~g}, 1.906 \mathrm{mmol}$) in the same solvent (2,3 or $5 \mathrm{~cm}^{3}$, depending on solubility) within 1 min at room temperature and stirred for 24 h . First, the clear solvent phase was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Then the solvent was removed from the reaction mixture and the entire homogeneous residue was analysed by ${ }^{1}$ H NM R and ${ }^{13} \mathrm{C}$ NM R spectroscopy to obtain the ratios of (3-isopropoxy-carbonyl-2-oxopropyl)triphenylphosphonium bromide 8c, isopropyl 4-bromo-3-oxobutanoate $\mathbf{7 c}$, isopropyl 3 -oxobutanoate $\mathbf{6 c}$ and other phosphonium salts (see Table 1). \dagger

M ethod (2). Slow addition of portions of triphenylphosphine to a solution of isopropyl 4-bromo-3-oxobutanoate 7c in CDCl_{3} at room temperature led to a 60.5% yield of $\mathbf{8 c}$ [based on the ${ }^{1} \mathrm{H}$ N M R integration of the methylene $\left(1-\mathrm{H}_{2}\right)$ doubled (δ_{H} 6.18 , J ${ }_{\mathrm{PH}} 11.5$) and the isopropoxy methyl groups at $\delta_{\mathrm{H}} 1.22$] and 18% of $6 \mathbf{c}$ [isopropoxy methyl groups at $\delta_{\mathrm{H}} 1.27$ and the methyl group ($4-\mathrm{H}_{3}$) at $\delta_{\mathrm{H}} 2.28$]. The region between $\delta_{\mathrm{H}} 7.9$ and 7.5 showed a $21-28 \%$ excess due to $\mathrm{Ph}_{3} \mathrm{P}=0$ and what we assume to be $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{OH} \mathrm{Br}^{-}$. Three other phosphonium salts had isopropoxy methyl doublets at $\delta_{\mathrm{H}} 1.08(9.3 \%), 0.89(3.4 \%)$ and 0.81 (1.9\%) and a further 6.6% material was unaccounted for. Typical phosphorus coupling doublet of doublets and doublets were seen at $\delta_{\mathrm{H}} 6.50\left(\mathrm{dd}, \mathrm{J}_{\mathrm{PH}} 21\right.$ and $\mathrm{J}_{\text {нн }} 5$) and 5.19 ($\mathrm{d}, \mathrm{J}_{\mathrm{PH}}$ 15.7). 9c: [Found: $\mathrm{M}^{+}(\mathrm{LSIMS})$, 483.0755. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BrO}_{3} \mathrm{P}$ requires M, 483.0725]. 10c: [Found: M^{+}(LSIM S), 467.0785. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BrO}_{2} \mathrm{P}$ requires M , 467.0776] (see Scheme 4). \dagger

(3-I sopropoxycarbonyl-2-oxopropyl)triphenylphosphonium bromide 8c

Isopropyl 4-bromo-3-oxobutanoate $7 \mathrm{cc}(50.0 \mathrm{~g}, 0.224 \mathrm{~mol})$ in anhydrous benzene ($100 \mathrm{~cm}^{3}$) was added to triphenylphosphine $(59.5 \mathrm{~g}, 0.227 \mathrm{~mol})$ in anhydrous benzene ($300 \mathrm{~cm}^{3}$) at room temperature and stirred for 24 h . The precipitate was recrystallised from propan-2-ol ($200 \mathrm{~cm}^{3}$) and benzene ($400 \mathrm{~cm}^{3}$) to give clear white crystals of (3-isopropoxycarbonyl-2-oxopropyl)triphenylphosphonium bromide 8 c which were filtered and dried ($90.1 \mathrm{~g}, 82.9 \%$) (Found: C, 61.8; H, 5.5. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BrO}_{3} \mathrm{P}$ requires $\mathrm{C}, 61.9 ; \mathrm{H}, 5.4 \%$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3490$ (br m), 3415 (br m), 3040 (w), 2970 (m), 2770 (br m), 1739 (vs), 1715 (s), 1438 (s), 1352 (s), 1338 (s), 1283 (m), 1210 (m), 1124 (m), 1105 (s), $967(\mathrm{~m}), 749(\mathrm{~s}), 717(\mathrm{~m}), 691(\mathrm{~s}) ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) 18.68$ [Found: $\mathrm{M}^{+}\left(\right.$LSIM S), 405.1634. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{P}$ requires M , 405.1620); m/z (LSIM S) 405 (M ${ }^{+}, 100 \%$), 345 (20), 319 (30), 275 (12), 183 (17).

Isopropyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 1c

A solution of sodium carbonate ($22.0 \mathrm{~g}, 0.208 \mathrm{~mol}$) in water ($600 \mathrm{~cm}^{3}$) was added to a solution of (3-isopropoxycarbonyl-2oxopropyl)triphenylphosphonium bromide 8c (95.1 g, 0.1959 mol) in dichloromethane ($500 \mathrm{~cm}^{3}$) within 20 min under vigorous stirring and stirred for another 3 h . The organic phase was separated, washed with water and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$, the solvent was evaporated and the crude phosphonium ylide recrystallised from benzene to give isopropyl 3 -oxo-4-(triphenylphosphoranylidene)butanoate 1c ($67.8 \mathrm{~g}, 85.6 \%$) (Found: C, 74.2 ; H, 6.2 . $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{PO}_{3}$ requires C, $74.4 ; \mathrm{H}, 6.3 \%$); $v_{\text {max }}\left(\right.$ mull, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ 3020 (w), 2980 (w), 1719 (s), 1576 (m), 1555 (s), 1436 (m), 1390 (s), 1313 (m), 1178 (m), 1106 (s), 864 (m), 750 (m), 717 (m), 695 (m) [Found: $\mathrm{M}^{+}\left(\mathrm{LSIM}\right.$ S), 404.1525. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{P}$ requires M , 404.1541]; m/z(L SIM S) 405 ($\mathrm{M} \mathrm{H}^{+}, 100 \%$), 303 (40), 279(10), 145 (10); m/z (CI) 405 (100\%), 345 (20), 319 (30), 275 (12), 183 (17).

(2-A cetoxy-3-isopropoxycarbonylprop-2-enyl)triphenylphosphonium bromide 17

I sopropyl 3-acetoxy-4-bromobut-2-enoate 16c ($205 \mathrm{mg}, 0.773$ mmol) in CDCl_{3} was treated with triphenylphosphine (215 mg ,

Table $7{ }^{13} \mathrm{C}$ Chemical shifts (δ_{c} in ppm) of compounds $\mathbf{1 7}$ (allyl, Z), 19 (allyl E) and 18 (vinyl) ${ }^{\text {a }}$

N o.	$\mathbf{1 7}$	19	18
1	$116.72(87.0)$	$116.90(86.7)$	$118.60(92.0)$
2	$133.73(10.3)$	$133.94(10.3)$	$133.36(11.1)$
3	$129.80(12.9)$	$130.08(12.9)$	$130.28(13.3)$
4	$134.86(2.8)$	$135.68(3.0)$	$134.90(3.0)$
5	$30.84(50.9)$	$27.81(50.7)$	$96.89(88.6)$
6	$148.12(12.1)$	$152.17(11.8)$	$165.80(20.2)$
7	$116.06(10.2)$	$\sim 115.3(11)$	$40.77(11.5)$
8	$161.87(2.5)$	~ 164.5	166.38
9	67.44	68.52	69.22
10	21.2	21.52	21.52
11	166.55	166.34	166.94
12	19.87	20.94	19.69

${ }^{\text {a }}$ At 50 M Hz in CDCl_{3} with J_{pc} measured in Hz in parentheses.

Table $8{ }^{\mathbf{1}} \mathrm{H}$ Chemical shifts (δ_{H} in ppm) of compounds 17,19 and $\mathbf{1 8}^{\mathrm{a}}$

No.	$\mathbf{1 7}$	$\mathbf{1 9}$	$\mathbf{1 8}$
Ph	$7.95-7.67$	$7.95-7.67$	$7.95-7.67$
5	$5.35(15.4)$	obscured ~ 5.1	$5.57(16.1)$
7	$6.48(3.9)$	$6.03(4.5)$	4.28
9	$4.91(6.2)$	$4.69(6.2)$	$5.01(6.2)$
10	$1.16(6.2)$	$1.07(6.2)$	$1.24(6.2)$
12	1.70	1.91	1.42

${ }^{\text {a }}$ At 200 M Hz in CDCl_{3} with J_{PH} measured in Hz in parentheses.
$0.81 \mathrm{mmol})$ and left to stand for 7 days. The solution turned yellow after 24 h . A fter 7 days the reaction was complete and had equilibrated to a mixture of (E) - and (Z)-(2-acetoxy-3-iso-propoxycarbonylprop-2-enyl)triphenylphosphonium bromide 19 and 17 in 20 and 25% yield respectively and (2-acetoxy- 3 -iso-propoxycarbonylprop-1-enyl)triphenylphosphonium bromide (55\%) 18 (Tables 7 and 8).
M acroscale procedure. Isopropyl 3-acetoxy-4-bromobut-2-enoate 16c ($6.00 \mathrm{~g}, 22.6 \mathrm{mmol}$) was added to dried triphenylphosphine ($6.00 \mathrm{~g}, 22.9 \mathrm{mmol}$) and was slowly heated in an oil bath to a melt. The ingredients were thoroughly mixed and kept in an oven at $70^{\circ} \mathrm{C}$. The viscous melt solidified in 15 min and was kept for another 1 h at $70^{\circ} \mathrm{C}$ to give an almost quantitative yield of only (Z)-(2-acetoxy-3-isopropoxycarbonyl-prop-2enyl)triphenylphosphonium bromide 17 (Found: C, 61.5; H, 5.35. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{BrO}_{4} \mathrm{P}$ requires $\mathrm{C}, 62.0 ; \mathrm{H}, 5.4 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3045 (m), 2990 (m), 2850 (m), 2750 (m), 1780 (s), 1709 (s$), 1657$ (m), 1438 (m), 1360 (s), 1235 (s), 1168 (s), 1102 (s), 1012 (m), 994 (m), 758 (m), 719 (m), 691 (s) [Found: $\mathrm{M}^{+}(\mathrm{LSIM} \mathrm{S})$, 447.1684. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{M}, 447.1725 \mathrm{~J} ; \mathrm{m} / \mathrm{z}$ (LSIM S) 447 $\left(\mathrm{M}^{+}, 100 \%\right), 405(2), 345(80), 262(20), 183(20)$.

I sopropyl 4-bromo-3-(trimethylsilyloxy)but-2-enoate 20c

Isopropyl 4-bromo-3-oxobutanoate 7c ($2.00 \mathrm{~g}, 8.96 \mathrm{mmol}$) in anhydrous diethyl ether ($3 \mathrm{~cm}^{3}$) was added within 5 min to an oil free suspension of sodium hydride ($0.27 \mathrm{~g}, 11.3 \mathrm{mmol}$) in anhydrous diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. A vigorous evolution of hydrogen gas resulted and the reaction mixture was stirred for a further 15 min at $0^{\circ} \mathrm{C}$. The reaction mixture was treated with trimethylsilyl chloride ($1.40 \mathrm{~cm}^{3}, 1.198 \mathrm{~g}, 11.0 \mathrm{mmol}$) with vigorous stirring at $0^{\circ} \mathrm{C}$. A gel, formed of finely divided sodium chloride in diethyl ether, was shaken loose before stirring the mixture for another 60 min . The gel suspension was transferred under anhydrous conditions to a small flask and the solvent
removed cautiously under vacuum and the powder-gel bulb-to-bulb vacuum distilled to give isopropyl 4-bromo-3-(trimethylsilyloxy)but-2-enoate 20c (1.20 g, 45.3\%); bp $90^{\circ} \mathrm{C} /$ 0.2 mmH g (Found: $\mathrm{C}, 40.7 ; \mathrm{H}, 6.5 . \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BrO}_{3} \mathrm{Si}$ requires C , 40.7; H, 6.7\%); $v_{\max }$ (film)/cm ${ }^{-1} 2980(\mathrm{~m}), 1717(\mathrm{~s}), 1632(\mathrm{~s})$, 1468 (w), 1402 (s), 1386 (s), 1374 (s), 1235 (s), 1207 (s), 1163 (s), 1109 (s), 1016 (s), 998 (m), 848 (s) [Found: $\mathrm{M}^{+}(E I)$, 294.0271. $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BrO}_{3} \mathrm{Si}$ requires $\mathrm{M}, 294.0287 \mathrm{~J}$; m / z (EI) 294 ($\mathrm{M}^{+}, 3 \%$), 252 (20), 237 (100), 159 (50), 143 (20), 99 (15), 75 (55), 73 (70).

Preparation of (3-isopropoxycarbonyl-2-oxopropyl)triphenylphosphonium bromide 8 c via isopropyl 4 -bromo-3-(trimethyl-silyloxy)but-2-enoate 20c and triphenylphosphine
I sopropyl 4-bromo-3-(trimethylsilyloxy)but-2-enoate 20c ($0.90 \mathrm{sg}, 3.43 \mathrm{mmol}$) was added neat to a solution of triphenylphosphine ($0.89 \mathrm{~g}, 3.39 \mathrm{mmol}$) in anhydrous toluene ($5 \mathrm{~cm}^{3}$) and stirred for 24 h at room temperature A fter 30 min a yellowish white precipitate started to form, and after 24 h the precipitation of a mixture of phosphonium bromides 22c, 23c and 24c was complete. A few droplets of water were added to a fast stirring suspension of the salt and stirred for 3 h . The resulting salt was filtered and dried at $40^{\circ} \mathrm{C}$ to give without further purification (3-isopropoxycarbonyl-2-oxopropyl)triphenylphosphonium bromide 8c ($1.55 \mathrm{~g}, 94.2 \%$) (Found: C, 61.8; H, 5.5. $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 61.9 ; \mathrm{H}, 5.4 \%$). For the mixture 22c, 23c and 24c: [Found: ($\left.\mathrm{MH}-\mathrm{SiM}_{3}\right)^{+}(\mathrm{LSIMS})$, 405.1612. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{MH}-\mathrm{SiM} \mathrm{e}_{3} 405.1620$]; m / z (LSIM S) 477 $\left(\mathrm{M}^{+}, 100 \%\right), 405(50), 345(15), 262$ (40) (note the silyl group was too labile for accurate mass determination).

E thyl 4-chloro-3-(trimethylsilyloxy)but-2-enoate 20f

Ethyl 4-chloro-3-oxobutanoate ($2.00 \mathrm{~g}, 12.15 \mathrm{mmol}$) in anhydrous diethyl ether ($3 \mathrm{~cm}^{3}$) was added to an oil free suspension of sodium hydride ($0.36 \mathrm{~g}, 15.0 \mathrm{mmol}$) in anhydrous diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ within 5 min . A vigorous evolution of hydrogen gas resulted and the reaction mixture was stirred for a further 15 min at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched, all at once, with trimethylsilyl chloride $\left(1.80 \mathrm{~cm}^{3}\right.$, $1.54 \mathrm{~g}, 14.18 \mathrm{mmol}$) with vigorous stirring at $0^{\circ} \mathrm{C}$. A gel, formed of finely divided sodium chloride in diethyl ether, was shaken loose before stirring for another 60 min . The gel suspension was transferred under anhydrous conditions to a small flask and the solvent removed cautiously under vacuum and the dry powder-gel bulb-to-bulb vacuum distilled to give ethyl 4-chloro-3-(trimethylsilyloxy)but-2-enoate 20 f (2.35 g , 81.7%); bp $70^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Found: C, $45.8 ; \mathrm{H}, 7.55$. $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{ClO}_{3} \mathrm{Si}$ requires C, 45.7; $\mathrm{H}, 7.2 \%$); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 2960$, 1721 (s), 1636 (s), 1405 (m), 1252 (m), 1214 (s), 1170 (m), 1149 (m), 1046 (m), 999 (m), 849 (s).

Preparation of isopropyl 4-bromo-3-(tert-butyldimethyIsilyloxy)-but-2-enoate 25c

I sopropyl 4-bromo-3-oxobutanoate $7 \mathrm{c}(2.00 \mathrm{~g}, 8.96 \mathrm{mmol})$ was added neat (via syringe) to a suspension of oil free sodium hydride ($0.30 \mathrm{~g}, 12.5 \mathrm{mmol}$) in anhydrous TH F ($20 \mathrm{~cm}^{3}$) within 5 min at $0^{\circ} \mathrm{C}$ with stirring. A vigorous evolution of hydrogen gas resulted, and stirring was continued for another 20 min at $0^{\circ} \mathrm{C}$. The soluble anion was treated with tert-butyldimethylsilyl chloride ($1.50 \mathrm{~g}, 9.95 \mathrm{mmol}$) in anhydrous THF ($5 \mathrm{~cm}^{3}$) within 3 min and stirred for 3 days at room temperature. At $0^{\circ} \mathrm{C}$ no precipitation of NaCl occurred, but at room temperature a suspension started to form after 2 h . A fter the reaction was complete, the solution was diluted with anhydrous diethyl ether (50 cm^{3}) and filtered over a bed (2 cm) of silica gel. The solvents were removed under reduced pressure, which gave a crude residue ($2.78 \mathrm{~g}, 91.9 \%$), contaminated with NaCl . This residue was bulb-to-bulb distilled to give isopropyl 4-bromo-3-(tert-butyl-dimethylsilyloxy)but-2-enoate $\mathbf{2 5 c}\left(2.05 \mathrm{~g}, 67.8 \%\right.$) (bp $125^{\circ} \mathrm{C} / 0.5$ mmH g) which solidified in the refrigerator at $-21^{\circ} \mathrm{C}$ (Found:

C, 46.1; H, 7.75. $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{BrO}_{3} \mathrm{Si}$ requires $\mathrm{C}, 46.3 ; \mathrm{H}, 7.5 \%$); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2978(\mathrm{~m}), 2956(\mathrm{~m}), 2935(\mathrm{~s}), 2860(\mathrm{~m}), 1716(\mathrm{~s})$, 1706 (s), 1700 (s), 1626 (s), 1616 (s), 1472 (m), 1465 (m), 1420 (m), 1372 (m), 1329 (s), 1306 (s$), 1256$ (s$), 1161$ (s$), 1154(\mathrm{~s})$, 1128 (s), 1110 (s), 1032 (s), 933 (m), 906 (m), 842 (s), 834 (s), 826 (s); $\lambda_{\max }($ EtOH $) / \mathrm{nm} 205,247\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3300,9050\right)$ [Found: $\mathrm{M}^{+}(\mathrm{LSIMS})$, $337.0822 . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{BrO}_{3} \mathrm{Si}$ requires M , 337.0835]; m/z (LSIM S) 337 (M ${ }^{+}, 55 \%$), 295 (15), 279 (100), 237 (60), 215 (20).

Preparation of (3-isopropox ycarbonyl-2-oxopropyl)triphenylphosphonium bromide 8c. T he reaction of triphenylphosphine and (\mathbf{E})-isopropyl 4-bromo-3-(tert-butyldimethylsilyloxy)but-2enoate 25c
(E)-I sopropyl 4-bromo-3-(tert-butyldimethylsilyloxy)but-2enoate 25c ($337 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}\left(0.7 \mathrm{~cm}^{3}\right.$) was treated with dried triphenylphosphine ($268 \mathrm{mg}, 1.02 \mathrm{mmol}$) at room temperature, for $4 \mathrm{~h} .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectroscopy showed that the phosphonium salt in a mixture of [3-isopropoxycarbonyl-2-(tert-butyldimethylsilyloxy)prop-2-enyl]triphenylphosphonium bromide (E isomer) 28c and [3-isopropoxycarbonyl-2-(tert-butyldimethylsilyloxy)prop-1-enyl]triphenylphosphonium bromide 27c had formed. The deuteriochloroform solution was added within 5 min to toluene ($10 \mathrm{~cm}^{3}$) and then treated with 2 drops of water and vigorously stirred for 2 h at room temperature. The precipitate was filtered and washed with toluene to give, after drying, pure [3-isopropoxycarbonyl-2-oxopropyl]triphenylphosphonium bromide 8c ($0.41 \mathrm{~g}, 84.5 \%$)

P reparation of ethyl 3-(tert-butyldimethylsilyloxy)-4-chlorobut-2-enoate $25 f$

Ethyl 4 -chloro-3-oxobutanoate $7 \mathrm{f}(2.00 \mathrm{~g}, 12.15 \mathrm{mmol})$ was added neat (via syringe) to a suspension of oil free sodium hydride ($0.36 \mathrm{~g}, 15.0 \mathrm{mmol}$) in anhydrous THF ($20 \mathrm{~cm}^{3}$) within 5 min at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred magnetically and a vigorous evolution of hydrogen gas resulted. The reaction mixture was stirred for another 20 min at $0^{\circ} \mathrm{C}$, before the resulting pale yellow, soluble anion was treated with tertbutyldimethylsilyl chloride ($2.00 \mathrm{~g}, 13.27 \mathrm{mmol}$) in anhydrous THF ($5 \mathrm{~cm}^{3}$) within 5 min and stirred for 3 days at room temperature. At room temperature a suspension was formed after 2 h. A fter the reaction had completed the solution was diluted with anhydrous diethyl ether ($50 \mathrm{~cm}^{3}$) and filtered over a bed (2 cm) of silica gel. The solvents were removed under reduced pressure and gave a crude residue (3.68 g), contaminated with NaCl . This residue was bulb-to-bulb distilled to give (E)-ethyl 4-chloro-3-(tert-butyldimethylsilyloxy)but-2-enoate 25 f (2.59 g , 76.4%), bp $105^{\circ} \mathrm{C} / 0.5 \mathrm{mmH}$ g which solidified in the refrigerator at $-21{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 51.7 ; \mathrm{H}, 8.4 . \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{ClO}_{3} \mathrm{Si}$ requires C , 51.7; H, 8.3\%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2933$ (s), 2860 (s), 1714 (s), 1628 (s), 1472 (m), 1465 (m), 1429 (m), 1370 (m), 1345 (s), 1258 (s), 1167 (s), 1136 (vs), 1047 (m), 902 (m), 842 (m) [Found: $\mathrm{M}^{+}(\mathrm{LSIMS}), 279.1186 . \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{ClO}_{3} \mathrm{Si}$ requires M , 279.1183]; m/z (EI) 279 (M $\left.{ }^{+}, 100 \%\right), 233$ (70), 221 (65), 193 (45).

Preparation of (3-ethoxycarbonyl-2-oxopropyl)triphenylphosphonium chloride 8f. The reaction of triphenylphosphine and (E)-ethyl 3-(tert-butyldimethylsilyloxy)-4-chlorobut-2-enoate 25 f

M ethod (a). (E)-Ethyl 3-(tert-butyldimethylsilyloxy)-4-chlorobut-2-enoate $25 f\left(279 \mathrm{mg}, 1 \mathrm{mmol}\right.$) in $\mathrm{CDCl}_{3}\left(0.7 \mathrm{~cm}^{3}\right)$ was treated with dried triphenylphosphine ($265 \mathrm{mg}, 1.01 \mathrm{mmol}$) at room temperature and was thoroughly mixed and heated at $60^{\circ} \mathrm{C}$ for 14 h . A fter 5 min , the solution became orange. ${ }^{1} \mathrm{H}$ NMR spectroscopy showed that the phosphonium salt in a mixture of [3-ethoxycarbonyl-2-(tert-butyldimethylsilyloxy)-prop-2-enyl]triphenylphosphonium chloride (E isomer) 28 f and [3-ethoxycarbonyl-2-(tert-butyldimethylsilyloxy)-prop-1enyl]triphenylphosphonium chloride $27 f$ had formed. The deuteriochloroform solution was added within 5 min to toluene $\left(10 \mathrm{~cm}^{3}\right)$ and then treated with 2 drops of water and vigorously
stirred for 2 h at room temperature. The clear solution was decanted and the sticky residue dissolved in ethanol $\left(1 \mathrm{~cm}^{3}\right)$ and precipitated with toluene to give after filtration and drying (3-ethoxycarbonyl-2-oxopropyl)triphenylphosphonium chloride $8 f(0.35 \mathrm{~g}, 81.4 \%)$. For mixture 27 f and 28 f intermediates: [Found: $\mathrm{M}^{+}(\mathrm{LSIMS})$, 505.2341. $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{PSi}$ requires M , 505.2328]; m/z (LSIM S) 505 (M ${ }^{+}, 75 \%$), 391 (OH-form) (100), 345 (10), 303 (25), 262 (30).

M ethod (b). (E)-Ethyl 3-(tert-butyldimethylsilyloxy)-4-chlorobut-2-enoate $25 f$ ($279 \mathrm{mg}, 1 \mathrm{mmol}$) and triphenylphosphine ($267 \mathrm{mg}, 1.01 \mathrm{mmol}$) were thoroughly mixed and heated at $60^{\circ} \mathrm{C}$ for 5 h . A solid crystallised and a viscous liquid drifted on the top. The liquid was analysed by GC-M S and found to be a mixture of tert-butyldimethylsilylchloride, tertbutyldimethylsilanol and bis(tert-butyldimethylsilyl)ether. $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right]\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}: \mathrm{m} / \mathrm{z}(\mathrm{EI}) 150\left(\mathrm{M}^{+}, 30 \%\right), 95(85), 93$ (100), 89 (85), 73 (35); [($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right]\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiOH}: \mathrm{m} / \mathrm{z}(\mathrm{EI}) 132\left(\mathrm{M}^{+}, 15 \%\right)$, 75 (100); [(CH33) C$]\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiOSi}\left(\mathrm{CH}_{3}\right)_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]: \mathrm{m} / \mathrm{z}(\mathrm{EI}) 246$ (${ }^{+}$, 2\%), 231 (10), 189 (85), 149 (60), 148 (80), 147 (100), 133 (40), 131 (30), 117 (30), 73 (75).

A cknowledgements

The author acknowledges Dr Graham Rowbottom for elemental analyses and Dr N oel D avies for mass spectral analyses. Financial support from the Australian Research Council is gratefully acknowledged.

References

1 H. M uxfeldt, G. Grethe, K. U hlig and H. Zeugner, C hem. Ber., 1963, 2943
$2 \mathrm{~J} . \mathrm{I} . \mathrm{G} . \mathrm{Cadogan}$, in Organophosphorus Reagents in Organic Synthesis, ed. I. Gosney and A. G. Rowley, A cademic Press, N ew York, 1979, p. 17.
3 (a) F. Serratosa and E. Sole. An. R. Soc. Esp. Fis. Quim., Ser. B, 1966, 62, 431 (Chem, A bstr., 1967, 66, 2623f); (b) G. Juzo and I. U eda, Jap P 91242 417/1991 (C hem. A bstr., 1993, 119, 159882v); (c) M. El-B adawi and E. Zbiral, M onatsh. C hem., 1985, 116, 77.

4 (a) T. K ato, N. K atagiri and K. Takashima, J. Chem. Soc., Chem. Commun., 1982, 664; (b) T. K ato, Chem. A bstr., 1984, 100, P7068v; (c) T. K ato, N. Takagiri, K. Takashima and T. Haneda, J. Chem. Soc., Perkin Trans. 1, 1984, 553; (d) F. J. L opez Herrera and C. U. Baelo, C arbohydr. Res., 1985, 139, 95; (e) F. J. Lopez H errera and C. U. Baelo, C arbohydr. Res., 1985, 143, 161; (f) K. M. Sun, R. D. D awe and B. Fraser-R eid, C arbohydr. Res., 1987, 171, 35.

5 K. M. Pietrusiewicz, J. M onkiewicz and R. Bodalski, J. Org. Chem., 1983, 48, 788.
6 For typical M ichael-Wittig condensations see: (a) G. Buchi and H. Wuest, H elv. Chim. A cta, 1971, 54, 1767; (b) F. Bohlmann and C. Zdero, Chem. Ber., 1973, 106, 3779; (c) W. G. D auben and J. I paktschi, J. A m. Chem. SoC., 1973, 95, 5088; (d) W. G. D auben, D. H art, J. I paktschi and A. P. K ozikowski, Tetrahedron L ett., 1973, 4425; (e) W. G. D auben and A. P. K ozikowski, Tetrahedron Lett., 1973, 3711; (f) A. Padwa and L. Brodsky, J. Org. Chem., 1974, 39, 1318.

7 (a) K. M. Pietrusiewicz and I. Salammonczyk, J. Org. C hem., 1988, 53, 2837; (b) E. J. Corey and K. K amiyama, Tetrahedron Lett., 1990, 31, 3995; (c) M. K. Gurjar, T. R. D evi, K. L. N. Reddy, P. A. Sharma and T. G. M . D har, Indian J. C hem., Sect. B, 1993, 32, 995; (d) S. G. H egde and R. D. Bryant, Synth. Commun., 1993, 23, 2753; (e) M . G. Banwell and J. M . Cameron, Tetrahedron L ett., 1996, 37, 525.
8 C. M. M oorhoff and D. F. Schneider, Tetrahedron Lett., 1987, 28, 4721.

9 C. M. M oorhoff, PhD Thesis, 1986, U niversity of Stellenbosch.
10 (a) G. Juzo and I. U eda, J ap P 0558 956/1991 (C hem. A bstr., 1993, 119, 20496v); (b) M . H atanaka, Y. Tanaka, Y. H imeda and I. U eda, Tetrahedron L ett., 1993, 34, 4837; (c) M. H atanaka, Y. Tanaka and I. U eda, Tetrahedron Lett., 1995, 36, 3719; (d) M. H atanaka, A . Ishida, Y. Tanaka and I. U eda, Tetrahedron L ett., 1996, 37, 401.
11 K. M. Pietrusiewicz and J. M onkiewicz, Tetrahedron Lett., 1986, 27, 739; see also: O. I. K olodiazhnyi, Tetrahedron, 1996, 52, 1855.
12 For the preparation of the analogous methyl 4-bromo-3oxobutanoate 7a, see: R. O. D uthaler, H elv. C him. A cta, 1983, 66, 1475. These bromo esters slowly decompose at room temperature and were distilled three times before use and stored below $-20^{\circ} \mathrm{C}$.

13 (a) A. J. Speziale and R. C. Freeman, J. A m. C hem. Soc., 1960, 82 903; (b) S. Trippett, J. C hem. Soc., 1962, 2337; (c) I. J. Borowitz and L. I. G rossman, Tetrahedron L ett., 1962, 471; (d) D. B. D enney and L. B. Smith, J. Org. Chem., 1962, 3404; (e) I. J. Borowitz and R. Virkhaus, J. A m. Chem. Soc., 1963, 85, 2183; (f) P. A. Chopard, R. F. Hudson and C. K lopman, J. Chem. Soc., 1965, 1379; (g) R. D. Partos and A. J. Speziale, J. A m. Chem. Soc., 1965, 5068; (h) A. J. Speziale and L. J. Taylor, J. Org. Chem., 1966, 2450; (i) I. J. Borowitz, K. C. K irby and R.Virkhaus, J. Org. Chem., 1966, 31, 4031; (j) I. J. Borowitz and H. Parnes, J. Org. Chem., 1967, 32, 3560 (k) I. J. Borowitz, P. E. Rusek and R. Virkhaus, J. Org. Chem., 1969, 34, 1595; A. J. Speziale and R. D. Partos, J. A m. Chem. Soc., 1963, 85, 3312.
14 It was found that the absence of HBr in the quaternization reaction of 7 c and $\mathrm{Ph}_{3} \mathrm{P}$ was due to HBr being scavenged by $\mathrm{Ph}_{3} \mathrm{P}=0$. The ${ }^{13} \mathrm{C} N M R$ signals of $\mathrm{Ph}_{3} \mathrm{P}=0$ in the presence of the phosphonium salt 8 c had a chemical shift difference of $\pm 1 \mathrm{ppm}$.
15 The same result was obtained with ethyl and methyl 4-bromo-3oxobutanoates 7a and 7b. S-ethyl 4-bromo-3-oxobutanethioate 7d was unstable at room temperature.

16 C. M. M oorhoff, Synth. Commun., 1997, in the press
17 R . K. OIsen and R-L. Shao, J. Org. Chem., 1996, 61, 5852.
18 M . Shing, Tetrahedron, 1992, 48, 6777.
19 Preparation of tert-butyldiphenylsilyl enol ethers of 7c and $7 \mathbf{f}$ were less successful.
20 A. R. Vaino and W. A. Szarek, C hem. Commun., 1996, 2351.
21 The author thanks Dr George Britovsek for helpful discussions in connection with compound 29.
22 (a) F. Clerici, E. Folpini, M . L. Gelmi and D. Pocar, Tetrahedron, 1991, 47, 8907; (b) M. L. Gelmi and D. Pocar, Synthesis, 1992, 453.
23 (a) W. Schorkhuber and E. Zbiral, C hem. Ber., 1981, 114, 3165; (b) M. Le Corre and M . H. N ormant, A cad. Sci., C. R. Seances, Ser. 3, 1971, 273, 81.

Paper 7/00241F
R eceived 10th J anuary 1997
A ccepted 3rd M arch 1997

[^0]: \dagger Supplementary data: Experimental procedures and spectrometric data for compounds 1d, 6c, 6d, 7c, 7d, 7f, 8d, 15, 16c, 16e and metal enolates $30(\mathrm{M}=\mathrm{Al}, \mathrm{X}=\mathrm{Cl})$, and $30(\mathrm{M}=\mathrm{Sn}, \mathrm{X}=\mathrm{Cl})$ are available as supplementary data (no. 57243). Contact the British Library for details. For further information on the Supplementary Publications scheme, see 'Instructions for Authors', J. C hem. Soc., Perkin Trans. 1, 1997, Issue 1.

